Medical and Hospital News  
INTERN DAILY
New method enables biomedical imaging at one-thousandth the cost
by Staff Writers
Boston MA (SPX) Nov 30, 2015


MIT researchers have developed a new biomedical imaging system that harnesses an off-the-shelf depth sensor such as Microsoft's Kinect. The coloration of these images depicts the phase information contained in six of the 50 light frequencies the system analyzes. Image courtesy of the researchers.

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars. The system uses a technique called fluorescence lifetime imaging, which has applications in DNA sequencing and cancer diagnosis, among other things. So the new work could have implications for both biological research and clinical practice.

"The theme of our work is to take the electronic and optical precision of this big expensive microscope and replace it with sophistication in mathematical modeling," says Ayush Bhandari, a graduate student at the MIT Media Lab and one of the system's developers.

"We show that you can use something in consumer imaging, like the Microsoft Kinect, to do bioimaging in much the same way that the microscope is doing."

The MIT researchers reported the new work in the Nov. 20 issue of the journal Optica. Bhandari is the first author on the paper, and he's joined by associate professor of media arts and sciences Ramesh Raskar and Christopher Barsi, a former research scientist in Raskar's group who now teaches physics at the Commonwealth School in Boston.

Fluorescence lifetime imaging, as its name implies, depends on fluorescence, or the tendency of materials known as fluorophores to absorb light and then re-emit it a short time later. For a given fluorophore, interactions with other chemicals will shorten the interval between the absorption and emission of light in a predictable way. Measuring that interval - the "lifetime" of the fluorescence - in a biological sample treated with a fluorescent dye can reveal information about the sample's chemical composition.

In traditional fluorescence lifetime imaging, the imaging system emits a burst of light, much of which is absorbed by the sample, and then measures how long it takes for returning light particles, or photons, to strike an array of detectors. To make the measurement as precise as possible, the light bursts are extremely short.

The fluorescence lifetimes pertinent to biomedical imaging are in the nanosecond range. So traditional fluorescence lifetime imaging uses light bursts that last just picoseconds, or thousandths of nanoseconds.

Blunt instrument
Off-the-shelf depth sensors like the Kinect, however, use light bursts that last tens of nanoseconds. That's fine for their intended purpose: gauging objects' depth by measuring the time it takes light to reflect off of them and return to the sensor. But it would appear to be too coarse-grained for fluorescence lifetime imaging.

The Media Lab researchers, however, extract additional information from the light signal by subjecting it to a Fourier transform. The Fourier transform is a technique for breaking signals - optical, electrical, or acoustical - into their constituent frequencies. A given signal, no matter how irregular, can be represented as the weighted sum of signals at many different frequencies, each of them perfectly regular.

The Media Lab researchers represent the optical signal returning from the sample as the sum of 50 different frequencies. Some of those frequencies are higher than that of the signal itself, which is how they are able to recover information about fluorescence lifetimes shorter than the duration of the emitted burst of light.

For each of those 50 frequencies, the researchers measure the difference in phase between the emitted signal and the returning signal. If an electromagnetic wave can be thought of as a regular up-and-down squiggle, phase is the degree of alignment between the troughs and crests of one wave and those of another. In fluorescence imaging, phase shift also carries information about the fluorescence lifetime.

Not all of the light that strikes the biological sample is absorbed; some of it is reflected back. The MIT researchers' system takes the measurements of incoming light and fits them to a mathematical model of the overlapping intensity profiles of both reflected and re-emitted light.

Once it's deduced the intensity profile of the reflected light, it can calculate the distance between the emitter and the sample. So unlike conventional fluorescence lifetime imaging, the researchers' approach doesn't require distance calibration.

Sample size
According to Bhandari, some of his colleagues were skeptical that the returning light signal contained enough information to produce accurate models of the intensity profiles.

"They were not convinced that the precision of Kinect-like sensors is enough," he says.

"But lifetime and distance are two numbers. If you have two numbers, then 50 measurements is a lot. The desired information is two points, but the measurement is 50 points, so you have a ratio of one to 25. It's enough to give you the intuition that it should be workable."

The depth sensors that the researchers used in their experiments - the Kinect and others - had arrays of roughly 20,000 light detectors each, and the most accurate results came when the detector was 2.5 meters away from the biological sample.

That setup doesn't afford the image resolution that existing fluorescence lifetime imaging microscopes do. But while denser arrays of detectors and optics that better control the emission and gathering of light would inflate the cost of the researchers' system beyond the $100 that a Kinect costs, it still shouldn't be nearly as expensive as current fluorescence lifetime imaging systems.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERN DAILY
Sensor sees nerve action as it happens
Durham NC (SPX) Nov 30, 2015
Researchers at Duke and Stanford Universities have devised a way to watch the details of neurons at work, pretty much in real time. Every second of every day, the 100 billion neurons in your brain are capable of firing off a burst of electricity called an action potential up to 100 times per second. For neurologists trying to study how this overwhelming amount of activity across an entire brain ... read more


INTERN DAILY
Russia causing 'environmental disaster' in Ukraine

Fukushima protective sea wall cracking

Climate change and conflict, a perfect storm

Brazil mining giant rejects UN anger over 'toxic' flood

INTERN DAILY
Raytheon completes GPS III launch readiness exercise

LockMart advances threat protection on USAF GPS Control Segment

Orbital ATK products enable improved global positioning on Earth

Galileo pair preparing for December launch

INTERN DAILY
China cloning pioneer offers vision of brave new world

Fossilized Homo erectus skull found in China

Clues emerge about the earliest known Americans

Human brains evolved to be more responsive to environmental influences

INTERN DAILY
A changing season means a changing diet for bison

For pigeons, follow the leader is a matter of speed

When every species counts

South African judge lifts domestic ban on rhino horn trade

INTERN DAILY
Fighting AIDS a top priority in western Kenya

With climate change, malaria risk in Africa shifts, grows

'Live positively': Togo's 'Tino' sets example for HIV/AIDS

Adolescent deaths from AIDS tripled since 2000: UNICEF

INTERN DAILY
Chinese paper chides Miss Canada over rights stance

Ma's South China Morning Post takeover a double-edged sword

Miss Canada lashes out at Beijing after contest snub

China upholds conviction of journalist, 71, grants parole: lawyer

INTERN DAILY
U.S., U.K. help build West African partners' anti-piracy capabilities

Villagers recall fear as troops fired in 'Chapo' raid

Chinese 'thief' swallowed diamond, tried to flee Thailand

Army's role questioned in missing Mexican students case

INTERN DAILY
China's yuan success hinges on reform despite IMF move

China manufacturing index falls to more than 3-year low

India's economy grows 7.4 percent, outperforms China: govt

Looking for a job? Online is where it's at









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.