New coating is too slippery for bacteria to grow on by Brooks Hays Boston (UPI) Nov 1, 2016
It's hard for biofilm to develop on the surface of an object if bacteria can't latch on to it. Scientists believe a new, ultra-low adhesive coating could thwart bacterial growth before it starts by making medical implants and other devices extra slippery. The new coating material is called SLIPS, short for "slippery liquid-infused porous surfaces." In tests, the coating reduced bacterial adhesion by more than 98 percent. "Device related infections remain a significant problem in medicine, burdening society with millions of dollars in health care costs," Dr. Elliot Chaikof, surgeon-in-chief at the Beth Israel Deaconess Medical Center in Boston, said in a news release. "Antibiotics alone will not solve this problem. We need to use new approaches to minimize the risk of infection, and this strategy is a very important step in that direction." SLIPS coatings were developed by Joanna Aizenberg, a researcher and faculty member at Harvard's Wyss Institute for Biologically Inspired Engineering. Aizenberg has engineered coatings to reject a variety of substances and for a range of environmental conditions. "We are developing SLIPS recipes for a variety of medical applications by working with different medical-grade materials, ensuring the stability of the coating, and carefully pairing the non-fouling properties of the SLIPS materials to specific contaminates, environments and performance requirements," said Aizenberg. "Here we have extended our repertoire and applied the SLIPS concept very convincingly to medical-grade lubricants, demonstrating its enormous potential in implanted devices prone to bacterial fouling and infection." Researchers also tested the anti-adhesion ability of SLIPS coatings while being exposed to conditions designed to replicate a mammal's insides. The efficacy was the same. Scientists also tested an actual medical implant, medical mesh coated with SLIPS. The mesh was implanted into a mouse model. The model was then injected with Staphylococcus aureus. After three days, there was little to evidence of an infect on the mesh, while control implants featured an infection rate of more than 90 percent. Researchers detailed the coating technology in a new paper published this week in the journal BioMaterials.
Related Links Hospital and Medical News at InternDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |