. Medical and Hospital News .




INTERN DAILY
MU scientists build harness for powerful radiation cancer therapy
by Staff Writers
Columbia MO (SPX) Feb 06, 2013


The nanoparticle that Robertson's research team created is multi-layered. At the core lies the element, actinium, surrounded by four layers of material. Robertson's team then coated the nanoparticle with gold. Credit: J. David Robertson/University of Missouri.

We've all heard that "it's not wise to use a cannon to kill a mosquito." But what if you could focus the cannon's power to concentrate power into a tiny space?

In a new study, University of Missouri researchers have demonstrated the ability to harness powerful radioactive particles and direct them toward small cancer tumors while doing negligible damage to healthy organs and tissues. The study is being published this week in PLOS ONE, an international, peer-reviewed and open-access publication.

Typically, when radiation treatment is recommended for cancer patients, doctors are able to choose from several radiopharmaceuticals that use low-energy radiation particles, known as beta particles. For years, scientists have been studying how to use "alpha particles," which are radioactive particles that contain a large amount of energy, in cancer treatments.

The challenges to using alpha particles, which are more than 7,000 times heavier than beta particles, include confining the powerful alpha particles in a designated location inside the body while preventing radiation from wandering to healthy organs and tissues.

"If you think of beta particles as slingshots or arrows, alpha particles would be similar to cannon balls," said J. David Robertson, director of research at the MU Research Reactor and professor of chemistry in the College of Arts and Science.

"Scientists have had some successes using alpha particles recently, but nothing that can battle different cancers. For example, a current study using radium-223 chloride, which emits alpha particles, has been fast-tracked by the U.S. Food and Drug Administration because it has been shown to be effective in treating bone cancer. However, it only works for bone cancer because the element, radium, is attracted to the bone and stays there.

We believe we have found a solution that will allow us to target alpha particles to other cancer sites in the body in an effective manner.

Robertson and researchers from Oak Ridge National Laboratory and the School of Medicine at the University of Tennessee in Knoxville used the element "actinium," which is an element known as an "alpha emitter" because it produces alpha particles. As it decays, actinium creates three additional elements that produce alpha particles.

Due to the strength of these particles though, keeping the elements in place at cancer sites was not possible, until Robertson and Mark McLaughlin, MU doctoral student and co-author on the study, designed a gold-plated nanoparticle that serves as a holding cell for the elements, keeping them in place at the cancer site.

Robertson's nanoparticle is a layered device. At the core is the original element, actinium. Robertson's team then added four layers of material and then coated the nanoparticle with gold. This made the nanoparticle strong enough to hold the actinium - and the other alpha emitters that are eventually created - long enough for any alpha particles to destroy nearby cancer cells.

"Holding these alpha emitters in place is a technical challenge that researchers have been trying to overcome for 15 years," Robertson said. "With our nanoparticle design, we are able to keep more than 80 percent of the element inside the nanoparticle 24 hours after it is created."

While alpha particles are extremely powerful, they don't travel very far, so when the nanoparticles get close to cancer cells, the alpha particles move out and destroy the cell much more effectively than current radiation therapy options, Robertson said.

"Previously, basic research had established that scientists can attach antibodies onto gold nanoparticles that help drive the nanoparticles to the tumor sites in the body," Robertson said. "Without that groundbreaking work, we would not have been able to put this puzzle together."

The early-stage results of this research are promising. If additional studies are successful within the next few years, MU officials will request authority from the federal government to begin human drug development (this is commonly referred to as the "investigative new drug" status). After this status has been granted, researchers may conduct human clinical trials with the hope of developing new treatments for cancer.

.


Related Links
University of Missouri-Columbia
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





INTERN DAILY
Tomorrow's life-saving medications may currently be living at the bottom of the sea
Portland OR (SPX) Feb 04, 2013
OHSU researchers, in partnership with scientists from several other institutions, have published two new research papers that signal how the next class of powerful medications may currently reside at the bottom of the ocean. In both cases, the researchers were focused on ocean-based mollusks - a category of animal that includes snails, clams and squid and their bacterial companions. Sea li ... read more


INTERN DAILY
HDT Global Awarded Guardian Angel Air-Deployable Rescue Vehicle Contract

Sri Lanka rescues 138 stranded on sinking boat: navy

Munich Re says profits quadrupled in 2012

NGO ends Mozambique flood aid over graft: report

INTERN DAILY
Trimble Introduces High-Accuracy Correction Service For Agriculture

MediaTek Announces World's First 5-in-1 Multi-GNSS Receiver

Fleet Managers Able to Track Drivers' Hours with Vehicle Tracking Systems

Galileo's search and rescue system passes first space test

INTERN DAILY
New Geology study raises questions about long-held theories of human evolution

3D printing breakthrough with human embryonic stem cells

Alternate walking and running to save energy, maintain endurance

Bionic man goes on show at British musuem

INTERN DAILY
France reshuffles the pack in bid to end wolf wrangle

Study: Elephants know where they are safe

Malaysia considers reward in dead Borneo elephant case

This is what a fish thought looks like

INTERN DAILY
New device traps particulates, kills airborne pathogens

UNC scientists unveil a superbug's secret to antibiotic resistance

Pandemic Controversies: the global response to pandemic influenza must change

Study shows climate change could affect onset and severity of flu seasons

INTERN DAILY
China police chief 'who owns hundreds of houses' sacked

China police chief accused of having 192 houses

Colonial flags fly as anger grows in Hong Kong

Mr Right for rent in China

INTERN DAILY
Japan police arrest mobster in Fukushima clean-up

Mexico scrambles to stem violence near capital

11 kidnapped Sudanese freed in Darfur: media

Britain earmarks $3.56M for anti-piracy

INTERN DAILY
China PMIs indicate recovery continues

Asia manufacturing eases in January

China house price rise accelerates in January

Japan hails upbeat data as turning point




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement