. Medical and Hospital News .




.
INTERN DAILY
Lung regeneration closer to reality with new discovery
by Staff Writers
New York BY (SPX) Nov 03, 2011

File image.

Researchers at Weill Cornell Medical College say they have taken an important step forward in their quest to "turn on" lung regeneration - an advance that could effectively treat millions of people suffering from respiratory disorders.

In the Oct. 28 issue of the journal Cell, the research team reports that they have uncovered the biochemical signals in mice that trigger generation of new lung alveoli, the numerous, tiny, grape-like sacs within the lung where oxygen exchange takes place. Specifically, the regenerative signals originate from the specialized endothelial cells that line the interior of blood vessels in the lung.

While it has long been known that mice can regenerate and expand the capacity of one lung if the other is missing, this study now identifies molecular triggers behind this process, and the researchers believe these findings are relevant to humans.

"Several adult human organs have the potential upon injury to regenerate to a degree, and while we can readily monitor the pathways involved in the regeneration of liver and bone marrow, it is much more cumbersome to study the regeneration of other adult organs, such as the lung and heart," says the study's lead investigator, Dr. Shahin Rafii, who is the Arthur B. Belfer Professor of Genetic Medicine and co-director of the Ansary Stem Cell Institute at Weill Cornell Medical College.

"It is speculated, but not proven, that humans have the potential to regenerate their lung alveoli until they can't anymore, due to smoking, cancer, or other extensive chronic damage," says Dr. Rafii, who is also an investigator at the Howard Hughes Medical Institute.

"Our hope is to take these findings into the clinic and see if we can induce lung regeneration in patients who need it, such as those with chronic obstructive pulmonary disease (COPD)."

"There is no effective therapy for patients diagnosed with COPD. Based on this study, I envision a day when patients with COPD and other chronic lung diseases may benefit from treatment with factors derived from lung blood vessels that induce lung regeneration," states Dr. Ronald G. Crystal, who is a co-author of this study and professor of pulmonary and genetic medicine at Weill Cornell.

Dr. Rafii and his researchers had previously uncovered growth factors that control regeneration in the liver and bone marrow, and in both cases, they found that endothelial cells produce the key inductive growth factors, which they defined as "angiocrine factors."

In the current lung study, they discovered the same phenomenon - that blood vessel cells in the lungs jump-start regeneration of alveoli.

"Blood vessels are not just the inert plumbing that carries blood. They actively instruct organ regeneration," says Dr. Rafii. "This is a critical finding. Each organ uses different growth factors within its local vascular system to promote regeneration."

To conduct this study, Dr. Bi-Sen Ding, a postdoctoral fellow in Dr. Rafii's lab and the first author of this paper, removed the left lungs of mice and studied the biochemical process of subsequent regeneration of the remaining right lung.

Previous pioneering work by Dr. Crystal had shown that when the left lung of mice is removed, the right lung regenerates by 80 percent, effectively replacing most of the lost alveoli.

"This regeneration process also restores the physiological respiratory function of the lungs, which is mediated by amplification of various epithelial progenitor cells and regeneration of the alveolar sacs," says Dr. Ding.

"This regenerative phenomenon, however, only occurs after a trauma that abruptly reduces lung mass. Then the specific subsets of blood vessels in the remaining lung receive a message to start to repopulate alveoli, and our job was to find that signal," says Dr. Daniel Nolan, a senior scientist in this project who developed methods to characterize the lung blood vessel cells.

The scientists found that removal of the left lung activates receptors on lung endothelial cells that respond to vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2).

Activation of these receptors promotes the rise of another protein, matrix metalloproteinase-14 (MMP14). The researchers discovered that MMP14, by releasing epidermal growth factors (EGF), initiates the generation of new lung tissue.

When the investigators disabled receptors of VEGF and FGF-2 specifically in the endothelial cells of the mice, the right lung would not regenerate. The defect in the lung regeneration was found to be due to the lack of MMP14 generation from the blood vessels.

Remarkably, when these mice received an endothelial cell transplant from a normal mouse, the production of MMP14 was restored, triggering the regeneration of functional alveoli.

"The recovery of lung function and lung mechanics by transplantation of endothelial cells that stimulate MMP14 production may be valuable for designing novel therapies for respiratory disorders," says Dr. Stefan Worgall, who helped with the functional lung studies in this project.

"This study will also help us understand mechanisms for repair in the growing lungs of infants and children," he adds. Dr. Worgall is associate professor of pediatrics and genetic medicine and distinguished associate professor of pediatric pulmonology.

Given MMP14's role, Dr. Rafii classifies it as a crucial "angiocrine" signal - a lung endothelial specific growth factor responsible for alveolar regeneration. Dr. Rafii's team also seeks to reveal the initiation signals resulting in the activation of lung blood vessels.

"Changes in local blood flow and biomechanical forces in the remaining lung after removal of the left lung could certainly be one of the initiation cues that induce endothelial activation," says Dr. Sina Rabbany, who is a co-senior author of this study and a professor of bioengineering at Hofstra University and adjunct associate professor of genetic medicine and bioengineering in medicine at Weill Cornell.

The researchers will next determine if MMP14 and other as-yet unrecognized angiocrine factors are responsible for lung regeneration in humans as well as mice.

"We believe the same process goes on in humans, although we have no direct evidence yet," says Dr. Ding. The study's authors theorize that patients with COPD (a disorder most often caused by chronic smoking) have so much damage to their lung endothelial cells that they no longer produce the proper inductive signals.

"We know smoking damages lungs, but lungs may continue to regenerate alveoli," says Dr. Koji Shido, a co-author of this study. "But at certain point, significant injury to the endothelial cells could impair their capacity to support lung regeneration."

"Perhaps replacement of angiocrine factors, or transplantation of normal lung endothelial cells derived from pluripotent stem cells, could restore lung regeneration" speculates Dr. Zev Rosenwaks, who is the director of the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine at Weill Cornell, and a co-author of this study.

"Currently, we are generating pluripotent stem cells derived from patients with genetic pulmonary disorders to identify potential pathways, which may ultimately enhance our understanding of how lung endothelial cells may improve lung function in these patients."

Related Links
Weill Cornell Medical College
Hospital and Medical News at InternDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



INTERN DAILY
Stem cells repair lung damage after flu infection
London, UK (SPX) Nov 03, 2011
Researchers have now identified and characterized adult stem cells that have the capacity to regenerate lung tissue. The findings, which come from studies of isolated human stem cells and of mice infected with a particularly nasty strain of H1N1 influenza virus, could lead to new regenerative therapies for acute and chronic airway diseases, according to the report published in the October 28th i ... read more


INTERN DAILY
Japan govt hands $11.5 bln aid to TEPCO: reports

US task force lays out priorities for post-quake Japan

No uncontrolled reaction at Fukushima: operator

Evacuation after ammonia leak at US nuclear plant

INTERN DAILY
Russia to launch four Glonass satellites in November

One Soyuz launcher, two Galileo satellites, three successes for Europe

Soyuz places Galileo satellites in orbit - mission control

GPS shoes for Alzheimer's patients to hit US

INTERN DAILY
Shared genes with Neanderthal relatives not unusual

Jawbone found in England is from the earliest known modern human in northwestern Europe

Commuting - bad for your health

Increased use of bikes for commuting offers economic, health benefits

INTERN DAILY
South Africa rhino poaching hits record: WWF

Animals That Are Born To Roar

Insects are scared to death of fish

So many proteins, so much promise

INTERN DAILY
Novel treatment protects mice against malaria; approach may work in humans as well

Dual flu infections in Cambodia raise concern

Multiple malaria vaccine offers protection to people most at risk

First Ebola-like virus native to Europe discovered

INTERN DAILY
China jails grandmother who organised protest

China urges condemnation of self-immolations

Exiled Tibet PM urges US pressure over protests

Tibetans divided by self-immolations

INTERN DAILY
S.Africa navy chief warns pirates could head south

Kenya to pursue kidnappers into Somalia: minister

China urges investigation of Mekong attack

China summons diplomats after deadly Mekong boat raid

INTERN DAILY
Chinese support for Europe could hit $100bn: banker

Taiwan allows banks to buy Chinese bonds

China economy 'slowing visibly': Rio Tinto chief

Sony forecasts fourth straight annual loss


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement