. Medical and Hospital News .




INTERN DAILY
Hydrogen peroxide vapor enhances hospital disinfection of superbugs
by Staff Writers
Baltimore MD (SPX) Jan 07, 2013


File image.

Infection control experts at The Johns Hopkins Hospital have found that a combination of robot-like devices that disperse a bleaching agent into the air and then detoxify the disinfecting chemical are highly effective at killing and preventing the spread of multiple-drug-resistant bacteria, or so-called hospital superbugs.

A study report on the use of hydrogen peroxide vaporizers -- first deployed in several Singapore hospitals during the 2002 outbreak of severe acute respiratory syndrome, or SARS, and later stocked by several U.S. government agencies in case of an anthrax attack - is to be published Jan. 1 in the journal Clinical Infectious Diseases.

In the study, the Johns Hopkins team placed the devices in single hospital rooms after routine cleaning to disperse a thin film of the bleaching hydrogen peroxide across all exposed hospital equipment surfaces, as well as on room floors and walls. Results showed that the enhanced cleaning reduced by 64 percent the number of patients who later became contaminated with any of the most common drug-resistant organisms. Moreover, researchers found that protection from infection was conferred on patients regardless of whether the previous room occupant was infected with drug-resistant bacteria or not.

"Hydrogen peroxide vapor, as spread around patients' rooms by these devices, represents a major technological advance in preventing the spread of dangerous bacteria inside hospitals and, especially, from one patient occupant to the next, even though sick patients were never in the same room at the same time," says infectious disease specialist and study senior investigator Trish Perl, M.D., M.Sc.

Of special note, researchers say, was that enhanced cleaning with the vapor reduced by 80 percent a patient's chances of becoming colonized by a particularly aggressive and hard-to-treat bacterium, vancomycin-resistant enterococci (VRE).

In what is believed to be the first head-to-head comparison between traditional hand-cleaning and mopping with bleaching agents and robotic vaporizers, researchers routinely tested patients and their surroundings not only for VRE, but also for the more common methicillin-resistant Staphylococcus aureus, or MRSA, and lesser-known bacteria, including Clostridium difficile and Acinetobacter baumannii.

Some 6,350 patient admissions to JHH were closely tracked as part of the two-and-a-half-year analysis, as patients moved into and out of 180 private hospital rooms. Almost half the rooms received enhanced cleaning with hydrogen peroxide vapor in between patients, while the rest did not. Overall, multiple-drug-resistant organisms were found on room surfaces in 21 percent of rooms tested, but mostly in rooms that did not undergo enhanced cleaning.

Perl says that patients bringing in or picking up drug-resistant organisms while undergoing treatment in hospitals is a persistent and growing problem, and previous research has shown that patients who stay in a hospital room previously occupied by an infected patient are at greater risk of becoming infected.

"Our study results are evidence that technological solutions, when combined with standard cleaning, can effectively and systematically decontaminate patients' rooms and augment other behavioral practices, such as strict hospital staff compliance with hand-washing and bathing patients in disinfecting chlorhexidine when they are first admitted to the hospital," says Perl, senior hospital epidemiologist for the Johns Hopkins Health System and a professor at the Johns Hopkins University School of Medicine.

"Our goal is to improve all hospital infection control practices, including cleaning and disinfection, as well as behavioral and environmental practices, to the point where preventing the spread of these multiple-drug-resistant organisms also minimizes the chances of patients becoming infected and improves their chances of recovery," says Perl.

The paired robot-like devices, each about the size of a washing machine and weighing nearly 60 pounds, as well as supplies used in the study, were provided by their manufacturer, Bioquell Inc. of Horsham, Pa.

After the room has been cleaned, the vents are covered and the two devices are placed inside. The sliding door is closed, and the room is sealed. Then, the larger of the two devices disperses hydrogen peroxide into the room, leaving a very tiny, almost invisible layer (only 2 microns to 6 microns in thickness) on all exposed surfaces, including keyboards and monitors, as well as tables and chairs.

Because hydrogen peroxide can be toxic to humans if ingested or corrosive if left on the skin for too long, the second, smaller device is activated to break down the bleach into its component water and oxygen parts. The combined operation takes the devices about an hour and a half to complete.

"What is so exciting about this new method of infection control is that the devices are easy to use and hospital staff embrace it very quickly," says surgeon and study co-investigator Pamela Lipsett, M.D., M.H.P.E. Lipsett, a professor and director of surgical and critical care fellowship training at Johns Hopkins, says that during the study and before room cleanings, staff were "wheeling in" other pieces of equipment so these, too, could be decontaminated by the hydrogen peroxide vapor.

As a result of the study and the researchers' recommendation, JHH has purchased two of the Bioquell decontaminating units, which cost more than $40,000 per pair. The devices, already in use at some 20 other hospitals across the country, will be used at Johns Hopkins to decontaminate rooms typically housing high-risk patients under strict isolation precautions because of severe infection with a multiple-drug-resistant organism.

Researchers say they next plan to study the devices' effectiveness at decontaminating the outside packaging of unused but potentially exposed hospital supplies, which are typically discarded even though their seals remain intact. The research team also wants to coordinate study testing among other hospitals to validate their Johns Hopkins findings.

Larger and longer studies may also be planned, to precisely measure and determine how well the devices work against the spread of each hospital superbug. The current study had only sufficient numbers to statistically validate the paired unit's effectiveness against VRE.

In addition to Perl and Lipsett, other Johns Hopkins University investigators involved in this study were study lead investigator Catherine Passaretti, M.D.; Nicholas Reich, Ph.D.; Jessica Meyers, M.P.H.; John Shepard, M.B.A.; and Karen Carroll, M.D. Additional study assistance was provided by Jonathan Otter, at Bioquell Inc., and Tracy Ross, at the University of Massachusetts, in Amherst.

.


Related Links
Johns Hopkins Medicine
Bioquell Q-10
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





INTERN DAILY
Britain's first hand transplant a success
Leeds, England (UPI) Jan 4, 2013
A British grandfather receiving the country's first hand transplant says he has already gained movement of his fingers following the operation. Former pub owner Mark Cahill, 51, received the new hand to replace a right hand left unusable for five years because of gout and a subsequent infection. Surgeons at Leeds General Infirmary amputated the functionless hand and replaced it with a d ... read more


INTERN DAILY
Obama signs $9.7 bn aid bill for Sandy victims

Congress approves $9.7 bn aid for storm Sandy victims

Obama considers broad arms sales restrictions: report

Fukushima 'unprecedented challenge': new Japan PM

INTERN DAILY
Beidou's unique services attractive to Chinese companies

China eyes greater market share for its GPS rival

Researchers told to ward off navigation system interference

Beidou helps put region on the map

INTERN DAILY
Did Lucy walk, climb, or both?

Study refutes accepted model of memory formation

Fluctuating environment may have driven human evolution

Decision to give a group effort in the brain

INTERN DAILY
Big brains are pricey, guppy study shows

The last link in the chain

Siberian region offers bounty for wolves

Bird watching brings new discoveries

INTERN DAILY
Swine flu kills Jordanian: health minister

Scientists say vaccine temporarily brakes HIV

Penn Team Mimicking a Natural Defense Against Malaria to Develop New Treatments

Swine flu kills nine Palestinians

INTERN DAILY
Protesters gather at China newspaper in censorship row

China labour camp reform revealed - then deleted

German reporter in China says equipment sabotaged

Statue built to reformer whose death sparked Tiananmen

INTERN DAILY
Mexican troops kill 12 suspects in gun battle

Pirates attack ship off Nigeria, kidnap Italian sailors

Four Chinese hostages freed in Colombia

Piracy will swell again if seas not policed: S.African Navy

INTERN DAILY
Walker's World: Merkel's tricky year

Spanish suicides point to worsening crisis

China house prices rise in December

China property tycoon blames government for prices




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement