Compound from marine snail is potent pain reliever by Staff Writers Salt Lake City UT (SPX) Feb 22, 2017
A tiny snail may offer an alternative to opioids for pain relief. Scientists at the University of Utah have found a compound that blocks pain by targeting a pathway not associated with opioids. Research in rodents indicates that the benefits continue long after the compound have cleared the body. The findings were reported online in the February 20 issue of the Proceedings of the National Academy of Sciences. The opioid crisis has reached epidemic proportions. Opioids is highly addictive and according to the Centers for Disease Control and Prevention, 91 Americans die every day from an opioid overdose. The medical community is in need of alternative therapies that do not rely on the opioid pathways to relieve pain. "Nature has evolved molecules that are extremely sophisticated and can have unexpected applications," begins Baldomera Olivera, Ph.D., professor in biology at the University of Utah. "We were interested in using venoms to understand different pathways in the nervous system." Conus regius, a small marine cone snail common to the Caribbean Sea, packs a venomous punch, capable of paralyzing and killing its prey. In this study, the researchers found that a compound isolated from snail's venom, Rg1A, acts on a pain pathway distinct from that targeted by opioid drugs. Using rodent models, the scientists showed that nicotinic acetylcholine receptors (nAChR) functions as a pain pathway receptor and that RgIA4 is an effective compound to block this receptor. The pathway adds to a small number of nonopioid-based pathways that could be further developed to treat chronic pain. Interestingly, the duration of the pain relief is long, greatly outlasting the presence of the compound in the animal's system. The compound works its way through the body in 4 hours, but the scientists found the beneficial effects lingered. "We found that the compound was still working 72 hours after the injection, still preventing pain," said J. Michael McIntosh, M.D., professor of psychiatry at the University of Utah Health Sciences. The duration of the outcome may suggest that the snail compound has a restorative effect on some components of the nervous system. "What is particularly exciting about these results is the aspect of prevention," said McIntosh. "Once chronic pain has developed, it is difficult to treat. This compound offers a potential new pathway to prevent pain from developing in the first place and offer a new therapy to patients who have run out of options." The researchers will continue to the next step of pre-clinical testing to investigate the safety and effectiveness of a new drug therapy.
Testing a new nonopioid compound To do this, they used synthetic chemistry to engineer 20 analogs of the compound. In essence, the scientists started with a key (RgIA) that fits into a lock. Using the key as a template, they developed new keys (analogs) with slightly different configurations. The scientists found one key that best fit the lock: the analog RgIA4 tightly bound to the human receptor. To test whether the compound relieved pain, the scientists administered it to rodents that were exposed to a chemotherapy drug that causes extreme cold sensitivity, as well as hypersensitivity to touch. "Interactions that are not normally painful, like sheets rubbing against the body or pants against the leg, becomes painful," said McIntosh. While the untreated rodents experienced pain after exposure to the chemotherapy drug, rodents given the compound did not experience pain. Nor did rodents that were genetically altered rodents to lack the pain pathway receptor. This work demonstrates that nAChR acts as a pain pathway receptor, and that RgIA4 prevents the receptor from being activated. Most pain medications available today work through a limited number of pathways and are not sufficient to alleviate chronic pain. "RgIA4 works by an entirely new pathway, which opens the door for new opportunities to treat pain," said McIntosh. "We feel that drugs that work by this pathway may reduce burden of opioid use." McIntosh and Olivera collaborated with colleagues from University of Utah, University of Florence, Italy, A.T. Still University, University of Mississippi Medical Center, Kineta, Inc., Seattle, and the Veterans Affairs Medical Center, Salt Lake City. note: in the supplied copy - there were some ascii errors in the molecule descriptors
Vatican City (AFP) Feb 7, 2017 Ethics experts and human rights lawyers slammed the Vatican Tuesday for inviting a top Chinese health official to an organ trafficking summit despite concerns the Asian giant still uses tissue from executed prisoners. The Pontifical Academy of Sciences invited Huang Jiefu, the man in charge of overhauling China's transplant system, to the two-day conference in the tiny city state. Wendy ... read more Related Links University of Utah Hospital and Medical News at InternDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |