Subscribe free to our newsletters via your
. Medical and Hospital News .




INTERN DAILY
New live-cell printing technology works like ancient Chinese woodblocking
by Staff Writers
Houston TX (SPX) Feb 20, 2014


This image shows cells printed in a grid pattern by block cell printing technology (left) and woodblocks used in ancient Chinese printing (right). Image courtesy Lidong Qin lab and Digital Museum of Science and Art (Beijing, China).

With a nod to 3rd century Chinese woodblock printing and children's rubber stamp toys, researchers in Houston have developed a way to print living cells onto any surface, in virtually any shape. Unlike recent, similar work using inkjet printing approaches, almost all cells survive the process, scientists report in this week's Proceedings of the National Academy of Sciences.

The researchers, led by Houston Methodist Research Institute nanomedicine faculty member Lidong Qin, Ph.D., say their approach produces 2-D cell arrays in as little as half an hour, prints the cells as close together as 5 micrometers (most animal cells are 10 to 30 micrometers wide), and allows the use of many different cell types. They've named the technology Block-Cell-Printing, or BloC-Printing.

"We feel the current technologies are inadequate," Qin said. "Inkjet-based cell printing leaves many of the cells damaged or dead. We wanted to see if we could invent a tool that helps researchers obtain arrays of cells that are alive and still have full activity."

Recent work to print cells in two and three dimensions using electricity-gated inkjet technology have been largely successful, but sometimes only half of the printed cells survive the printing process -- a source of frustration for many laboratory scientists.

"Cell printing is used in so many different ways now -- for drug development and in studies of tissue regeneration, cell function, and cell-cell communication," Qin said. "Such things can only be done when cells are alive and active. A survival rate of 50 to 80 percent is typical as cells exit the inkjet nozzles. By comparison, we are seeing close to 100 percent of cells in BloC-Printing survive the printing process."

BloC-Printing manipulates microfluidic physics to guide living cells into hook-like traps in the silicone mold. Cells flow down a column in the mold, past trapped cells to the next available slot, eventually creating a line of cells (in a grid of such lines).

The position and spacing of the traps and the shape of the channel navigated by the cells is fully configurable during the mold's creation. When the mold is lifted away, the living cells remain behind, adhering to the growth medium or other substrate, in prescribed formation.

Qin's group tested BloC-Printing for its utility in studying cancerous cells and primary neurons. By arranging metastatic cancer cells in a grid and examining their growth in comparison with a non-metastatic control, the researchers found they could easily characterize the metastatic potential of cancer cells.

"We looked at cancer cells for their protrusion generation capability, which correlates to their malignancy level," Qin said. "Longer protrusion means more aggressive cancer cells. The measurement may help to diagnose a cancer's stage."

The researchers also printed a grid of brain cells and gave the cells time to form synaptic and autaptic junctions.

"The cell junctions we created may be useful for future neuron signal transduction and axon regeneration studies," Qin said. "Such work could be helpful in understanding Alzheimer's disease and other neurodegenerative diseases."

While it is too early to predict the market cost of BloC-Printing, Qin said the materials of a single BloC mold cost about $1 (US). After the mold has been fabricated and delivered, a researcher only needs a syringe, a carefully prepared suspension of living cells, a Petri dish, and a steady hand, Qin said. Inkjet cell printers can cost between $10,000 and $200,000.

"BloC-Printing can be combined with molecular printing for many types of drug screening, RNA interference, and molecule-cell interaction studies," he said. "We believe the technology has big potential."

While the fidelity of BloC-Printing is high, Qin said inkjet printing remains faster, and BloC-Printing cannot yet print multi-layer structures as inkjetting can.

Qin and postdoctoral fellow Kai Zhang, Ph.D., are BloC-Printing's co-inventors. Qin and Zhang's PNAS coauthors are Chao-Kai Chou, Ph.D., and Mien-Chie Hung, Ph.D., (the University of Texas M.D. Anderson Cancer Center), and Xiaofeng Xia, Ph.D. (Houston Methodist Research Institute). The researchers acknowledge support from the National Institutes of Health, the Cancer Prevention and Research Institute of Texas, the U.S. Dept. of Defense, the Emily Hermann Research Fund, the Golfers Against Cancer, and the Alliance for Nanohealth. In addition to his position in the Houston Methodist Research Institute's Department of Nanomedicine, Qin is also a Weill Cornell Medical College assistant professor of cell and developmental biology.

.


Related Links
Houston Methodist
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
Australian state has higher rate of hypothermia deaths than Sweden
Adelaide, Australia (SPX) Feb 19, 2014
New research from the University of Adelaide shows that the state of South Australia has a higher rate of deaths from extreme cold compared with the northern European nation of Sweden. The study, by a team from the University's School of Medical Sciences, analyzed forensic cases of hypothermia deaths from 2006-2011 in both South Australia and Sweden. The results show that South Austr ... read more


INTERN DAILY
100-tonne radioactive water leak at Fukushima: TEPCO

Post-tsunami deaths outnumber disaster toll in one Japan area

Police to investigate death of Manus asylum detainee

Outsmarting nature during disasters

INTERN DAILY
Russia to deploy up to 7 Glonass ground stations outside of national territory in 2014

Northrop Grumman Awarded U.S. Military Contract for Navigation Systems

Galileo works, and works well

Sochi Olympic transport controlled from space using GLONASS satellite

INTERN DAILY
What makes memories last?

Baylor Sheds New Light on the Habitat of Early Apes

Oldest fortified settlement in North America discovered in Georgia

Thinking it through: Scientists seek to unlock mysteries of the brain

INTERN DAILY
Five tiger cubs seized in Thai police wildlife haul

Chinese pandas get red-carpet welcome in Belgium

How bacteria communicate with us to build a special relationship

Cities support more native biodiversity than previously thought

INTERN DAILY
Flu hits young, middle aged people hard this year

Study on flu evolution may change textbooks, history books

Poland struck by first cases of African swine fever

Boy becomes Cambodia's first bird flu death of year

INTERN DAILY
Wife of jailed Chinese Nobel winner in hospital

Questions over recovery of China's lost marbles

Ai Weiwei brushes off painter's smashing of $1m vase

Hong Kong officials criticise anti-Chinese protest

INTERN DAILY
French navy arrests pirates suspected of oil tanker attack

Mexican vigilantes accuse army of killing four

Gunmen kill two soldiers in troubled Mexican state

China smugglers dig tunnel into Hong Kong: media

INTERN DAILY
One of China's richest women ousted from top political body

Dalai Lama, in US, seeks humane capitalism

Hard landing unlikely for 'poorly understood' China: IMF chief

ATMs raise Bitcoin profile, concerns




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.