Subscribe free to our newsletters via your




INTERN DAILY
How rocket science may improve kidney dialysis
by Staff Writers
Washington DC (SPX) Mar 23, 2015


Streamlines of flow within an idealized Arterio-Venous Fistulae are shown. The color of the lines corresponds to the speed of the blood--red being highest, and blue lowest. Image courtesy Peter Vincent/Imperial College London. For a larger version of this image please go here.

A team of researchers in the United Kingdom has found a way to redesign an artificial connection between an artery and vein, known as an Arterio-Venous Fistulae, which surgeons form in the arms of people with end-stage renal disease so that those patients can receive routine dialysis, filtering their blood and keeping them alive after their kidneys fail.

The new design, described in the journal Physics of Fluids, from AIP Publishing, may decrease the likelihood of blockages in Arterio-Venous Fistulae, which is a major complication of dialysis.

While the AVF would have to prove effective in clinical trials before they could be deemed a success, the researchers are enthusiastic about their approach, which used software from the aerospace industry to design the novel configurations.

"At the moment, the process of creating an Arterio-Venous Fistulae for dialysis is rather 'one-size-fits-all'," said Peter Vincent, a senior lecturer and EPSRC early career fellow in the Department of Aeronautics at Imperial College London. "Our ultimate aim is to use computational simulation tools to design tailored, patient-specific Arterio-Venous Fistulae configurations that won't block and fail."

Dialysis and Chronic Kidney Disease
Dialysis is a life-saving treatment for end-stage renal disease - the last stage of chronic kidney disease - a serious and often fatal health condition in which a person's kidneys become damaged and can no longer filter blood as effectively as healthy kidneys. As a result, wastes from the blood remain within the body and often lead to other health problems such as cardiovascular disease, anemia and bone disease.

Chronic kidney disease is a global health challenge. For perspective, in the United States alone, the Centers for Disease Control and Prevention estimates that more than 20 million adults - more than 10 percent of the U.S. adult population - may have the disease, although many are undiagnosed. Kidney disease is now the 9th leading cause of death in the U.S.

Once a person's kidney's fail, they require either a kidney transplant or regular treatment via a dialysis machine to keep filtering the blood like a kidney. Transplant surgeries often have very good outcomes, but the procedures are limited by the availability of donated kidneys, and only a few thousand become available every year in the United States, while tens of thousands of people are on the waiting list for a kidney transplant. People often wait for a new kidney transplant for years, having to undergo periodic dialysis the entire time.

One problem that arises with dialysis is that the connections made between the body and a dialysis machine via an Arterio-Venous Fistulae frequently become blocked and fail shortly after they are created - leading to unfavorable clinical outcomes and a significant additional cost burden for healthcare systems worldwide.

So an interdisciplinary team of U.K. researchers - including members from aeronautics, bioengineering, computational engineering, medical imaging and clinical medicine - from Imperial College London, Imperial College Renal and Transplant Centre at Hammersmith Hospital, and St. Mary's Hospital set out to design an Arterio-Venous Fistulae with reduced failure rates.

Design Based on Aerospace Software
To do this, the researchers first needed to gain a better understanding of how arterial curvature affects blood flow and oxygen transport patterns within Arterio-Venous Fistula.

Blood flow patterns within AVF are "inherently 'un-natural,' and it's thought that these unnatural flow patterns lead to their ultimate failure," explained Vincent.

By using computational simulation software originally developed for the aerospace sector, the team is able to simulate and predict flow patterns in various Arterio-Venous Fistula configurations. "This allows us to design Arterio-Venous Fistula with much more natural flow patterns, which will hopefully reduce failure rates," Vincent said.

The team "identified ways of constructing Arterio-Venous Fistula such that the flow is stabilized," he added. "We discovered that if an Arterio-Venous Fistulae is formed via connection of a vein onto the outside of an arterial bend, it stabilizes the flow."

The implications of this work are tremendous, because it may now finally be possible to design an Arterio-Venous Fistulae with reduced failure rates - offering improved clinical outcomes for patients with kidney failure who require dialysis.

The article, "The Effect of In-Plane Arterial Curvature on Blood Flow and Oxygen Transport in Arterio-Venous Fistulae," is authored by F. Iori, L. Grechy, R.W. Corbett, W. Gedroyc, N. Duncan, C.G. Caro and P. Vincent. It appears in the journal Physics of Fluids on March 17, 2015 (DOI: 10.1063/1.4913754).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
Regeneration in a hostile environment
Bonn, Germany (SPX) Mar 20, 2015
Damage to the spinal cord rarely heals because the injured nerve cells fail to regenerate. The regrowth of their long nerve fibers is hindered by scar tissue and molecular processes inside the nerves. An international team of researchers led by DZNE scientists in Bonn now reports in Science that help might be on the way from an unexpected quarter: in animal studies, the cancer drug epothil ... read more


INTERN DAILY
UN ask for $30mn to help cyclone-ravaged Vanuatu

Fukushima reactor test offers detailed look inside

UN disaster meet criticised for lack of targets

Health, education fears for Vanuatu's child cyclone survivors

INTERN DAILY
Sixth Galileo satellite reaches corrected orbit

Satnav orbiter nudged into better spot: ESA

ISRO plans to launch navigation satellite by March-end

Galileo satellites ready for fuelling as launcher takes shape

INTERN DAILY
Atlas of thoughts

Men's preference for certain body types has evolutionary roots

Human parasites found in medieval cesspit reveal ancient links

Scientist hopes vest will broaden range of human senses

INTERN DAILY
Parasite turns shrimp into voracious cannibals

How planthoppers got their wings

Time running out for wild elephants say experts

Plants' defensive responses have downstream effects on nearby ecosystems

INTERN DAILY
Gates calls for 'germ games' instead of war games

US to Deploy Chemical Brigade to Liberia to Combat Ebola

Swine flu outbreak in India raises concern

British Ebola patient flown home from S. Leone

INTERN DAILY
Three Chinese tourists killed in Thai bus crash

China eyes return of 'stolen' mummy: reports

Chinese anti-censorship group says it's under attack

Tibetan survivors of self-immolations face brutal fate: rights group

INTERN DAILY
Sagem-led consortium intoduces anti-piracy system

China arrests Turks, Uighurs in human smuggling plot: report

Two police to hang for murder in Malaysian corruption scandal

INTERN DAILY
IMF head welcomes China-backed bank on Beijing visit

China overseas investment jumps in February on Dutch deal: govt

China investigates former free trade zone official

China has 'ample' room for stimulus: premier




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.