Subscribe free to our newsletters via your




INTERN DAILY
Compact synchrotron makes tumors visible
by Staff Writers
Munich, Germany (SPX) May 09, 2015


X-ray images of a mouse show: normal X-ray image, phase contrast and darkfield image (fltr). The phase contrast, dark field and absorption images acquired using the new compact synchrotron have complementary properties. Image courtesy Elena Eggl / TUM. For a larger version of this image please go here.

Soft tissue disorders like tumors are very difficult to recognize using normal X-ray machines. There is hardly any distinction between healthy tissue and tumors. Researchers at the Technische Universitat Munchen (TUM) have now developed a technology using a compact synchrotron source that measures not only X-ray absorption, but also phase shifts and scattering. Tissue that is hardly recognizable using traditional X-ray machines is now visible.

X-ray images have become an integral part of daily medical practice. Bones, for example, absorb large amounts of X-rays because of their high calcium content. This allows them to be differentiated from air-filled cavities like the lungs and surrounding soft tissue. However, because of their very similar absorption coefficients, soft tissue, organs and structures inside organs, like tumors, are hardly discernable from one another using the medical devices deployed in medicine today.

Now a group of scientists headed by Franz Pfeiffer, Professor of Biomedical Physics in the Physics Department Department and the Faculty of Medicine at TU Munchen, have for the first time succeeded in making such soft tissue visible. The scientists used a new kind of X-ray source that was developed only a few years ago.

Compact synchrotron source
Unlike classical X-ray tubes, a synchrotron generates highly focused, monochromatic X-rays. The individual rays all have the same energy and wavelength. In the past, X-rays with these properties could only be generated in large particle accelerators, which have a circumference of at least one kilometer. The compact synchrotron, in contrast, has merely the size of a car and fits into a normal laboratory.

"Monochromatic radiation is much better suited for measuring other parameters, in addition to absorption," explains Elena Eggl, doctoral candidate at the Chair of Biomedical Physics. "This is because it does not lead to artifacts that deteriorate the image quality."

The scientists inserted an optical grating into the focused X-ray beam, allowing them to detect even tiniest phase shifts and scattering of the radiation in addition to the absorption of X-rays. The first phase contrast tomography image from a compact synchrotron source was successfully acquired.

Complementary information
The phase contrast, dark field and absorption images made using the new technology have complementary properties. Liquid in tissue that remains indiscernible and, thus, invisible using conventional X-ray tubes, suddenly comes to life. The greatly improved soft tissue contrast of the new X-ray technology could also help make tumors detectable earlier on and enable quick diagnoses - in medical emergencies, for example.

The clarity of the new technology becomes apparent when comparing white and brown fatty tissue. "In a mouse we were able to recognize not only heart, liver and other organs much better, but could even differentiate between brown and white body fat," says Eggl.

Brown fatty tissue, which occurs mainly in newborns, can support the burning of normal white fatty tissue. It is a relatively new discovery that adults, too, still have brown fatty tissue. Tissue that - as some researchers hope - can be reactivated to help obese people lose weight.

While these experiments were performed using an initial prototype setup of Lyncean Technologies Inc. in California, a significantly improved compact synchrotron source is under construction at the Garching Research Campus. It is part of the "Center for Advanced Laser Applications" (CALA), a joint project of the TU Munchen and the Ludwig-Maximillians Universitat (LMU). Eggl and Pfeiffer, in collaboration with colleagues in laser physics at the LMU and the Max Planck Institute of Quantum Optics, hope to further improve the new X-ray technology.

X-ray phase-contrast tomography with a compact laser-driven synchrotron source. Elena Eggl, Simone Schleede, Martin Bech, Klaus Achterhold, Roderick Loewen, Ronald Ruth, und Franz Pfeiffer. Proceedings of the National Academy of Sciences, PNAS, Early Edition, April 20, 2015 - DOI: 10.1073/pnas.1500938112


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Technische Universitaet Muenchen
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
China to lift drug price controls from June 1: govt
Shanghai (AFP) May 5, 2015
The Chinese government said on Tuesday it will scrap long-standing state price controls on most medicines, effective June 1, as part of market-oriented reforms. The government will no longer impose upper limits on retail prices for drugs, government agencies including the National Development and Reform Commission (NDRC) and National Health and Family Planning Commission said in a joint stat ... read more


INTERN DAILY
Saudi considering bombing pauses for Yemen aid delivery

Nepal quake leaves children traumatised

Lockheed Martin aids in post-cyclone damage assessment

Italy again calls for EU help after more migrant deaths

INTERN DAILY
Next Generation GPS System Faces Delays, Cost Overruns

Neuronal positioning system: A GPS to navigate the brain

NASA Goddard Team Sets High Flying Record with Use of GPS

China's satellite navigation system to expand coverage globally by 2020

INTERN DAILY
Can skull shape determine what food was on prehistoric plates

Study finds ancient clam beaches not so natural

Human weapons may not have caused the demise of the Neanderthals

Insight into how brain makes memories

INTERN DAILY
Proteomics identifies DNA repair toolbox

Nature paper describes revolutionary method of making RNAs

Hitting the borders of expansion

Zimbabwe vows to export elephants despite criticism

INTERN DAILY
Meningitis epidemic kills more than 250 in Niger

Dengue cases soar in Brazil, as death toll climbs

Disease fears hit Nepal's quake-hit homeless

Ream discovers new mechanism behind malaria progression

INTERN DAILY
China lodges US protest after religious freedom criticised

New York party of the year kowtows to China

China culture drive pushes out indie films

'Landmark verdict' for abused China wife who faced death

INTERN DAILY
A blast and gunfire: Mexico's chopper battle

INTERN DAILY
China consumer inflation rises subdued 1.5% in April

China manufacturing index at one-year low: HSBC

China announces measures to boost creativity, jobs

Japanese inflation ticks up, but spending still weak




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.