|
|
![]() |
![]() by Staff Writers Munich, Germany (SPX) May 09, 2015
Soft tissue disorders like tumors are very difficult to recognize using normal X-ray machines. There is hardly any distinction between healthy tissue and tumors. Researchers at the Technische Universitat Munchen (TUM) have now developed a technology using a compact synchrotron source that measures not only X-ray absorption, but also phase shifts and scattering. Tissue that is hardly recognizable using traditional X-ray machines is now visible. X-ray images have become an integral part of daily medical practice. Bones, for example, absorb large amounts of X-rays because of their high calcium content. This allows them to be differentiated from air-filled cavities like the lungs and surrounding soft tissue. However, because of their very similar absorption coefficients, soft tissue, organs and structures inside organs, like tumors, are hardly discernable from one another using the medical devices deployed in medicine today. Now a group of scientists headed by Franz Pfeiffer, Professor of Biomedical Physics in the Physics Department Department and the Faculty of Medicine at TU Munchen, have for the first time succeeded in making such soft tissue visible. The scientists used a new kind of X-ray source that was developed only a few years ago.
Compact synchrotron source "Monochromatic radiation is much better suited for measuring other parameters, in addition to absorption," explains Elena Eggl, doctoral candidate at the Chair of Biomedical Physics. "This is because it does not lead to artifacts that deteriorate the image quality." The scientists inserted an optical grating into the focused X-ray beam, allowing them to detect even tiniest phase shifts and scattering of the radiation in addition to the absorption of X-rays. The first phase contrast tomography image from a compact synchrotron source was successfully acquired.
Complementary information The clarity of the new technology becomes apparent when comparing white and brown fatty tissue. "In a mouse we were able to recognize not only heart, liver and other organs much better, but could even differentiate between brown and white body fat," says Eggl. Brown fatty tissue, which occurs mainly in newborns, can support the burning of normal white fatty tissue. It is a relatively new discovery that adults, too, still have brown fatty tissue. Tissue that - as some researchers hope - can be reactivated to help obese people lose weight. While these experiments were performed using an initial prototype setup of Lyncean Technologies Inc. in California, a significantly improved compact synchrotron source is under construction at the Garching Research Campus. It is part of the "Center for Advanced Laser Applications" (CALA), a joint project of the TU Munchen and the Ludwig-Maximillians Universitat (LMU). Eggl and Pfeiffer, in collaboration with colleagues in laser physics at the LMU and the Max Planck Institute of Quantum Optics, hope to further improve the new X-ray technology. X-ray phase-contrast tomography with a compact laser-driven synchrotron source. Elena Eggl, Simone Schleede, Martin Bech, Klaus Achterhold, Roderick Loewen, Ronald Ruth, und Franz Pfeiffer. Proceedings of the National Academy of Sciences, PNAS, Early Edition, April 20, 2015 - DOI: 10.1073/pnas.1500938112
Related Links Technische Universitaet Muenchen Hospital and Medical News at InternDaily.com
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |